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Abstract
We introduce a generalization of the Dobiński relation through which we define
a family of Bell-type numbers and polynomials. For all these sequences, we
find the weight function of the moment problem and give their generating
functions. We provide a physical motivation of this extension in the context of
the boson normal ordering problem and its relation to an extension of the Kerr
Hamiltonian.

PACS numbers: 02.30.−f, 02.10.Ox

1. Introduction

In this paper, we consider the Dobiński relation and its generalization. This topic naturally
belongs to the field of combinatorial analysis. The Dobiński relation [1] was first derived in
connection with Bell numbers B(n) = 1, 1, 2, 5, 52, 203, 877, . . . , n = 0, 1, 2, . . . , which
describe partitions of a set [2, 3]. That remarkable formula represents the integer sequence
B(n) as an infinite sum of ratios

B(n) = e−1
∞∑

k=0

kn

k!
. (1)

Closely related to the Bell numbers are Stirling numbers of the second kind S(n, k), k =
1, . . . , n, and the Bell polynomials defined as

B(n, x) =
n∑

k=1

S(n, k)xk, (2)
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related to B(n) by B(n) = B(n, 1) = ∑n
k=1 S(n, k). For the Bell polynomials, the Dobiński

relation (1) generalizes to

B(n, x) = e−x

∞∑
k=0

kn

k!
xk. (3)

These formulae may be derived using either combinatorial or purely analytical methods
starting from the original interpretation of Bell and Stirling numbers given in enumerative
combinatorics [4, 5]. Accordingly, Stirling numbers S(n, k) count the number of possible
partitions of the n-element set into k subsets (none of them empty) and Bell numbers B(n)

count all such partitions. We note that other pictorial representations can also be given, e.g.,
in terms of graphs [6] or rook numbers [7–9].

One may conversely take equation (1) (or equation (3)) as the definition of the Bell
numbers (or polynomials). This observation suggests the generalization of these sequences
through the Dobiński relation. In this paper, we introduce an extension of equation (1) and
define the family of Bell-type numbers as

B(n) =
∞∑

k=0

[P(k)]n

D(k)
, (4)

where P(k) and D(k) are any functions of k = 0, 1, 2, . . . such that D(k) �= 0 and the
above sum converges. Note that conventional Bell numbers are obtained for P(k) = k and
D(k) = ek!.

This generalization was also pointed out in [10, 11] in connection with the log-normal
distribution. Here, we focus on the general properties of our proposed definition and show
that the very specific form of equation (4) results in a straightforward solution of the moment
problem and calculation of the generating functions. We also comment on the connection to
physics and interpret the sequences so defined in the context of the problem of the normal
ordering of boson operators.

2. Generalized Dobiński relation and weight functions

Suppose that we want to solve the moment problem [12] for the sequence B(n), i.e. we seek a
positive weight function W(y) such that B(n) is its nth moment

B(n) =
∫

dy ynW(y). (5)

At this point, we do not specify the domain of W(y) or the limits of the integral. A closer
look at equation (4) yields the following candidate for the weight function:

W(y) =
∞∑

k=0

δ(y − P(k))

D(k)
. (6)

This is an infinite ensemble of weighted Dirac δ functions located at a specific set of points
{P(k), k = 0, 1, 2, . . .} and is called a Dirac comb. If all the weights 1/D(k) are positive
(D(k) > 0) and normalized to 1

(∑∞
k=0 1/D(k) = 1

)
then equation (6) is a positive and

normalized distribution which is a solution of the moment problem of equation (5). Whether
it corresponds to the Hamburger, Stieltjes or Hausdorff moment problem depends on the range
of the set {P(k), k = 0, 1, 2, . . .}. For example, for the sequence of Bell numbers B(n), the
weight function W(y) = e−1 ∑∞

k=0
δ(y−k)

k! is a positive and normalized distribution solving
the Stieltjes moment problem, see figure 1. A solution of the Hamburger moment problem
is generated by the set of restricted Bell numbers B1(n) = 1, 0, 1, 1, 4, 11, 41, 162, . . . for
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Figure 1. The portion for 0 � y � 5 of the weight function W(y) = e−1 ∑∞
k=0

δ(y−k)
k! solving the

Stieltjes moment problem for the Bell numbers B(n). Height of the vertical lines is proportional
to the weight of the Dirac δ functions.

n = 0, 1, . . . counting partitions without singletons [4]. They satisfy B1(n) = e−1 ∑∞
k=0

(k−1)n

k!

with P(k) = k − 1 and D(k) = ek!; the measure is W1(y) = e−1 ∑∞
k=0

δ(y−k+1)

k! . On the

other hand, the well-known Catalan numbers C(n) = 1
n+1

(
2n
n

)
are solutions of the Hausdorff

moment problem [14].
The specific form of equation (4) simplifies the calculation of the generating functions.

Taking the exponential generating function, substituting equation (4) and changing the
summation order, one obtains

G(λ) =
∞∑

n=0

B(n)
λn

n!
=

∞∑
k=0

eλP (k)

D(k)
. (7)

Evaluation of this series depends on the particular choice of the functions P(k) and D(k) and
in general the series may be divergent. For the Bell and restricted Bell numbers, equation (7),
it can be evaluated easily: G(λ) = ∑∞

n=0 B(n)λn

n! = eeλ−1 and G1(λ) = ∑∞
n=0 B1(n) λn

n! =
eeλ−1−λ.

Similarly, for the ordinary generating function, one gets

Go(λ) =
∞∑

n=0

B(n)λn =
∞∑

k=0

1

D(k) · (1 − P(k)λ)
. (8)

The same procedure can also be performed for other cases, e.g. for hypergeometric generating
functions [13]. The choice of the denominator in the generating function may depend on P(k),
D(k) and the purpose we need it for (e.g., when we need a convergent generating function for
analytical calculations).

In the same manner, one could generalize equation (3) and define

B(n, x) =
∞∑

k=0

[P(k, x)]n

D(k, x)
. (9)
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The additional variable in the functions P(n, x) and D(n, x) does not pose any complication
either in the proposed approach to the moment problem or in the evaluation of the generating
functions. However, we must observe that in general B(n, x) has an infinite expansion in x
and only for particular choices of the functions P(k, x) and D(k, x) does it yield polynomials.
This is certainly the case for D(k, x) = k!exx−k , and P(k, x) = P(k) a polynomial in k.
Therefore, we define the Bell-type polynomials as

B(n, x) = e−x

∞∑
k=0

[P(k)]n

k!
xk. (10)

As a result, the weight function of equation (6) takes the form

W(x, y) = e−x

∞∑
k=0

δ(y − P(k))

k!
xk, (11)

and the exponential generating function of equation (7) is

G(λ, x) = e−x

∞∑
k=0

eλP (k)

k!
xk. (12)

The case of conventional Bell polynomials is obtained for P(k, x) = k. Consequently,
one gets the positive and normalized weight function W(y, x) = e−x

∑∞
k=0

δ(y−k)

k! xk of the
Stjelties moment problem, B(n, x) = ∫ ∞

0 dyynW(y, x), and the exponential generating

function G(λ, x) = ∑∞
n=0 B(n, x)λn

n! = ex(eλ−1) (see [15]). Analogous considerations can
be applied to the polynomials generated by B1(n) leading to B1(n, x) = e−x

∑∞
k=0

(k−1)n

k! xk

and G1(λ, x) = ∑∞
n=0 B1(n, x) λn

n! = ex(eλ−1−λ).

3. Application to physics

Introduction of the generalized Bell-type numbers and polynomials through equations (4) and
(10) is not merely a mathematical artifice but has a firm grounding in physics. We will show
that they are related to the solution of the normal ordering problem for a general function of
the number operator, with application to quantum partition functions and, as an example, a
generalized Kerr-type Hamiltonian.

3.1. Normal ordering

Consider the boson creation operator a† and annihilation operator a satisfying the commutator
[a, a†] = 1. Suppose we are given a function of these operators. Its normally ordered
form is obtained by moving all the creation operators to the left of the annihilation operators
using the commutation relation. The normal ordering procedure is of fundamental importance
in quantum mechanical calculations in the coherent state representation, the latter defined
by the coherent states |z〉 = e−|z|2/2 ∑∞

n=0
zn√
n!

|n〉, where a†a|n〉 = n|n〉, 〈n|n′〉 = δn,n′ and

a|z〉 = z|z〉 [16]. For example, if we take the nth power of the number operator a†a, the
normal ordering procedure gives [17]

(a†a)n =
n∑

k=1

S(n, k)(a†)kak. (13)

It involves Stirling numbers of the second kind S(n, k) and the coherent state matrix element
yields the Bell polynomial

〈z|(a†a)n|z〉 = B(n, |z|2). (14)
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Now, we consider a general polynomial of the number operator denoted by

Hα(a†a) =
N∑

k=N0

αk(a
†a)k (15)

with some constants αk; N0 and N are the smallest and largest indices of non-vanishing αk ,
respectively. Physically, Hα may be thought of as a generalization of the Kerr Hamiltonian of
quantum optics [18]. The nth power of Hα defines the Stirling-type numbers as

[Hα(a†a)]n =
nN∑

k=N0

Sα(n, k)(a†)kak, (16)

and associated Bell-type polynomials (of order nN ) are

Bα(n, x) =
nN∑

k=N0

Sα(n, k)xk. (17)

We will now show that such polynomials defined in the normal ordering problem correspond
to the Bell-type polynomials introduced in equation (10).

To this end, observe that [a, a†] = [D,X] = 1 where D and X are the derivative and
multiplication operators. We first rewrite equation (16) in terms of D and X:

[Hα(XD)]n =
nN∑

k=N0

Sα(n, k)XkDk. (18)

By acting with the rhs of equation (18) on ex , one obtains exBα(n, x). Action of the lhs on ex

is more involved. First, we apply it to the monomial xm which yields [Hα(XD)]nxm =( ∑N
k=N0

αkm
k
)n

xm from which [Hα(XD)]n ex = ∑∞
m=0

(∑N
k=N0

αkm
k
)n xm

m! follows.
Combining these two observations, we deduce that

Bα(n, x) =
nN∑

k=N0

Sα(n, k)xk = e−x

∞∑
k=0

[Hα(k)]n

k!
xk, (19)

which has the same form as equation (10) for P(k) = Hα(k). The assumption that Hα(x)

is a polynomial guarantees that Bα(n, x) is also a polynomial in x. Although this additional
assumption may be irrelevant in general, as we have mentioned above it leads to infinite
sequences of Stirling-type numbers.

3.2. Partition function integrand

We have shown that the above approach gives an interpretation of the Bell-type polynomials
and numbers in the context of the normal ordering problem. We now remark that the normally
ordered exponential of a function of the number operator is the exponential generating function
of the associated Bell-type polynomials. In the coherent state representation, it may be written
as

〈z|eλHα(a†a)|z〉 = Gα(λ, |z|2) =
∞∑

n=0

Bα(n, |z|2)λ
n

n!

= e−|z|2
∞∑

k=0

eλHα(k)

k!
|z|2k, (20)

where in order to obtain the last equality we have used the Dobiński-type relation (19) and
changed the summation order. Consequently, in view of the general properties of the coherent
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state representation [19], the normally ordered form of the exponential of Hα(a†a) may be
readily obtained as

eλHα(a†a) = :e−a†a
∞∑

k=0

eλHα(k)

k!
(a†a)k:

=
∞∑

k=0

eλHα(k)

k!
(a†)k|0〉〈0|ak (21)

because of the relation :e−a†a : = |0〉〈0|. Taking the matrix element of equation (21) between
arbitrary states |A〉 and |B〉, we see that the Dobiński-type relations derived above are particular
cases of the Fock space expansion

〈A|Hn
α(a†a)|B〉 =

∞∑
k=0

Hn
α(k)〈A|k〉〈k|B〉. (22)

This may serve as a basis for the investigation of quantum boson representations of classical
combinatorial sequences, which we shall develop elsewhere. Here, we note that the last series
in equation (20) is uniformly convergent for |z|2 ∈ [0,∞) which means that Gα(λ, |z|2) may
be given a well-defined analytical meaning and clear physical interpretation as the partition
function integrand 〈z|e−βH|z〉 [20], (see also [21]), being in this case the Borel transform of the
partition function. Since Gα(λ, |z|2) also generates the combinatorial sequence Bα(n, |z|2),
we can say that the Dobiński-type relations derived above provide us with a method for
constructing models of combinatorial field theories, such as those proposed a few years ago
in [22]. This will inevitably relate quantum partition function expansions to combinatorial
sequences, including, for example, combinatorial interpretations of the generalized Stirling and
Bell numbers. Here, we simply recall our guiding example of the free Hamiltonian H = a†a
intimately related through equation (13) to the conventional Stirling and Bell numbers counting
partitions of a set. The restricted Bell polynomials mentioned throughout this paper constitute
an example corresponding to H = a†a − 1.

3.3. Generalized Kerr Hamiltonian: a combinatorial interpretation

The last illustration we give is connected to an example of the generalized Kerr Hamiltonian
in the interaction picture H = (a†)MaM where M is a fixed positive integer. Equation (16)
defines generalized Stirling numbers Sα(n, k) which also have a transparent combinatorial
interpretation. It comes down to considering Mn distinguishable objects with anti-correlated
M-set structure. This can be realized by colouring them in such a way that there are exactly
M objects of each colour, i.e. there are n differently coloured M-sets. Now, the numbers
Sα(n, k) count the partitions of that set into k subsets with the restriction that anti-correlated
sets are divided among different subsets, i.e. all objects in each subset are of different colours.
This means that we restrict partitions of an Mn set by requiring anti-correlation of certain
subsets. The Dobiński relation and the exponential generating function for the corresponding
Bell polynomials may be easily read off from equations (19) and (20) substituting Hα(k) =
P(k) = k · (k − 1) · · · (k − M + 1). The discrete weight function for the generalized Bell
numbers is concentrated on the infinite set {k · (k − 1) · · · (k − M + 1), k = M,M + 1, . . .}
and is given by Wα(y) = ∑∞

k=M δ(y − k · (k − 1) · · · (k − M + 1))/k!.



Dobiński-type relations: some properties and physical applications 5005

4. Conclusion

In conclusion, we want to emphasize the advantages of the introduction of the Bell-type
numbers and polynomials through the generalization of the Dobiński relation of equations (4)
and (10). It enables a straightforward solution of the moment problem in the form of a
Dirac comb, see equations (5), (6) and (11). Moreover, the calculation of the generating
functions simplifies considerably in that framework (see equations (7), (8) and (12)). We
have also pointed out that this generalization has immediate application to the boson normal
ordering problem. We have interpreted a wide class of Stirling-type numbers as the expansion
coefficients of normally ordered functions of the number operator. Further modifications of
the structure of the infinite series of equations (4) and (10) may, in general, lead to moment
problems with continuous weight functions and will be developed elsewhere.
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